
ABSTRACT

Recently several studies have attempted to investigate the association between vitamin D 
and microbiota. However, studies have reported inconsistent results. This narrative review 
aimed to investigate the potential association between vitamin D and microbiota population 
in the gut by pooling together the results from observational studies and clinical trials. We 
considered animal and human studies in this field. Several studies have shown the correlation 
of vitamin D deficiency with microbiota. Furthermore, interventional studies were emerging 
that vitamin D change the microbiota composition in which leads to an increase in beneficial 
bacteria, such as Ruminococcaceae, Akkermansia, Faecalibacterium, and Coprococcus while decreases 
in Firmicutes. Vitamin D could change the microbiota toward decreasing in Firmicutes and 
increasing in Bacteroidetes. At genera level, vitamin D may connect to some genera of 
Lachnospiaceae family (e.g., Blautia, Rosburia, Dorea, and Coprococcus). It seems that adequate level 
of vitamin D is an important factor in improving the composition of the gut microbiota. More 
studies are needed to confirm possible underling mechanisms.
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INTRODUCTION

Vitamin D deficiency is described as a public health concern globally, which has health 
consequences in more than one billion people [1,2]. Vitamin D is known for its role in 
calcium-phosphorus homoeostasis and bone metabolism [2]. Recent evidences have shown 
the association between hypovitaminosis D and autoimmune disorders [3], cancers [4,5], 
cardiovascular disease [6], diabetes mellitus [7], and infections [8,9]. Furthermore, vitamin 
D deficiency is highly associated with gastrointestinal diseases, including inflammatory 
bowel disease (IBD), irritable bowel syndrome (IBS), and colon cancer [10,11]. The presence 
of vitamin D receptor (VDR) in almost every tissue highlights the importance of vitamin D in 
biological functions. VDR is expressed in many cells, including muscle, intestinal epithelium, 
kidney and also in the immune cells [12,13]. As VDR is widely expressed in various immune 
cells, including B cells, T cells and antigen presenting cells, it may demonstrate the 
immunomodulatory role of vitamin D in different organs such as gut [13].
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Human gut is a host of numerous numbers of microorganisms (about 1013–1014) known as 
microbiota [14]. Evidence has supported the roles of microbiota in human's immunity and 
metabolism [15]. The microbiota includes bacteria, fungi, archaea, protozoa and viruses 
that act in the human gut as symbiotic or pathogenic [15,16]. More than 1,000 different 
bacterial species have been determined in human gut. The 4 major phyla composed the gut 
microbiota are at first Bacteroidetes and Firmicutes and then Actinobacteria, and Proteobacteria [17]. 
The alteration in the diversity of gut microbiota, called dysbiosis, can negatively influence 
gut health. The change in the composition and diversity of gut microbiota depends on many 
factors like host genetics, environmental factors, diet, antibiotics, pregnancy, and infection 
[18-21]. Among these factors, dietary elements responsible for up to 57% changes in gut 
microbiota [22].

Considering that vitamin D deficiency can cause gastrointestinal disease through its 
immunomodulatory role, recently, a hypothesis has been suggested on an association 
between vitamin D and gut microbiota. Recent human and animal investigations have shown 
that vitamin D could alter microbiota composition through increasing the maintenance of 
gut homeostasis [23] and decreasing permeability [24]. However, it is not clear how vitamin 
D could shift gut microbial communities to achieve these goals. Therefore, the present 
study reviewed the association between vitamin D and gut microbiota composition. The 
characteristics of studies are presented in details in Tables 1 and 2.

VITAMIN D AND MICROBIOTA: ANIMAL STUDIES

In a study by Assa et al. [26], a relatively high quantity of Bacteroidetes was found in vitamin 
D deficient mice. The researchers showed that vitamin D through preserving gut barrier 
homeostasis and tight-junction building reduces dysbiosis and adherent-invasive Escherichia 
coli colonization. Assa et al. [24] also reported the similar results in another study in which 
vitamin D deficient mice were more vulnerable to infectious and predisposed to epithelial 
barrier dysfunction that leads to increasing gut permeability. Jahani et al. [25] indicated 
supplementation with vitamin D3 during pregnancy and lactation had different effects 
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Table 1. Summary of animal studies
Author Population Sex Intervention Duration (day) Microbiome 

identification
Results

Jahani et al. 
[25]

Female and 
male CD-1 
mice

M/F 5,000 IU D3/
kg diet

During 
pregnancy, 

lactation and 
3-mon aged

qRT-PCR 
targeting 16S 
rRNA gene

VDR expression was 50% higher in the offspring in high vitamin D 
feeding group.
Lower vitamin D levels was correlated with increased pro-inflammatory 
genes expression at 3-mon age, low vitamin D diet fed mice had lower 
Bacteroides/Prevotella ratio count at PND 21 although this difference 
disappeared at adulthood.
Higher level of LPS concentration were seen in vitamin D deficient diet 
group at adulthood.

Assa et al. 
[24]

C57BL/6 mice F Vitamin D 
deficient diet

5 wk qPCR targeting 
16S rRNA gene

Higher relative quantities of Bacteroidetes, Firmicutes, Actinobacteria 
and Gammaproteobacteria: vitamin D deficient mice.
After 10-day injection of Citrobacter rodentium, relative abundance of 
Gammaproteobacteria and Actinobacteria in vitamin D deficient group.

Assa et al. 
[26]

C57BL/6 mice F Vitamin D 
deficient diet

5 wk qPCR targeting 
16S rRNA gene

Higher abundance of Bacteroidetes: vitamin D deficient mice.
Relative increase in Gammaproteobacteria was observed in infected 
mice with LF82.

Ooi et al. 
[23]

Cyp KO & VDR 
KO C57BL/6 
mice

Sex-
matched

1.25 mg/100 
g diet

NR qRT-PCR 
targeting 16S 
rRNA gene

Higher abundance of Bacteroidetes and Proteobacteria and lower 
bacteria from Firmicutes and Deferribacteres phyla was reported in Cyp 
KO and VDR KO mice compared with wild-type.

qRT-PCR, quantitative real time polymerase chain reaction; qPCR, quantitative polymerase chain reaction; VDR, vitamin D receptor; PND, postnatal days; LPS, 
lipopolysaccharides; KO, knockout; Cyp, cytochrome P; rRNA, ribosomal ribonucleic acid; NR, not reported.

https://e-cnr.org
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Table 2. Summary of interventional and observational human studies
Author Country Study type Population Sex Number Dose (IU/day) Duration 

(day)
Microbiome 

identification
Results

Schäffler et 
al. [27]

Germany Interventional Patients with 
Crohn's disease

M/F 17 20,000 IU daily 
from day 1 to day 

3, then every 
second day

30 PCR targeting 
16S rRNA gene

Grater abundance of Alistipes, Barnesiella, 
unclassified Porphyromonadaceae, 
Roseburia, Anaerotruncus, 
Subdoligranulum and an unclassified 
Ruminococaceae was seen after vitamin D 
supplementation.

Garg et al. 
[28]

London Interventional Patients with 
ulcerative colitis

M/F 25 40,000 IU D3 
weekly

60 PCR targeting 
16S rRNA gene

Enterobacteriaceae increased significantly 
after vitamin D supplementation.

Kanhere et 
al. [29]

USA Interventional Adults with 
cystic fibrosis

M/F 41 50,000 IU D3 
weekly

90 PCR targeting 
16S rRNA gene

Lactococcus was increased, while 
Veillonella and Erysipelotrichaceae were 
decreased.

Sordillo et 
al. [30]

USA Interventional Infants 3–6 
mons whose 
parents had 
allergies/asthma

M/F 333 4,000 or 400 IU/
day D3 + prenatal 

vitamins

NR Sequencing of 
bacterial 16S 
rRNA gene

Greater levels of Lachnospiraceae/U. 
Clostridales, higher frequency of 
Lachnobacterium, and lower frequency of 
Lactococcus.

Gominak et 
al. [17]

USA Interventional Neurology 
patient

M/F 90 Individualized 
dose of vitamin 
D to guarantee 
a blood level of 
60–80 ng/mL

Over 
1,000

NR NR

Ciubotaru et 
al. [31]

USA Interventional Prediabetes and 
hypovitaminosis

M/F 115 50,000 IU/week 
D3

Over 365 PCR targeting 
16S rRNA gene

Lower relative abundance of genera 
belonging to the Lachnospiraceae (e.g., 
Ruminococcus, Roseburia, Blautia, and 
Dorea).
Lower abundance of members of 
Clostridia class.

Cantarel et 
al. [3]

USA Interventional Women with 
or without 
relapsing-
remitting 
multiple 
sclerosis

F - 5,000 IU/day D3 90 PCR targeting 
16S rRNA gene

Greater abundance of Faecalibacterium 
and Enterobacteriaceae, and lower 
abundance of Ruminococcus.
MS patients (untreated): higher 
Akkermansia, Faecalibacterium, and 
Coprococcus genera.
MS patients (treated by GA): higher 
Janthinobacterium, lower Eubacterium 
and Ruminococcus.

Talsness et 
al. [32]

The 
Netherlands

Observational One month old 
infants

M/F 913 - - RT-PCR 
targeting 16S 
rRNA gene

A significant negative linear trend between 
maternal vitamin D supplementation 
and plasma 25(OH) D concentration and 
Bifidobacterium spp. was seen.
There was a positive linear trend between 
quintile groups and Bacteroides fragilis 
group counts.
In some breast-fed infants vitamin 
D supplementation leads to lower 
abundance of Clostridium difficile.

Luthold et 
al. [33]

Brazil Observational Healthy 
individual

M/F 150 - - PCR targeting 
16S rRNA gene

Higher abundance of Provotella and 
lower abundance of Haemophilus and 
Veillonella.
Lower abundance of Coprococcus and 
Bifidobacterium.

Mandal et 
al. [34]

Norway Observational Pregnant women F 60 - - PCR targeting 
16S rRNA gene

Increased Actinobacteria/Proteobacteria 
ratio, Actinobacteria/Bacteroidetes ratio, 
Proteobacteria/Firmicutes ratio, and other 
Bacteroides.

Thomas et 
al. [35]

USA Observational Older men M 567 - - PCR targeting 
16S rRNA gene

Higher levels of 1,25(OH)2 D were more 
related to butyrate producing bacteria 
that are associated with better gut 
microbial health.

Kassem et 
al. [36]

USA Observational Infants M/F 580 - - PCR targeting 
16S rRNA gene

Prenatal and cord blood vitamin D levels 
were associated with early life (up to 1 
mon) gut microbiota.

PCR, polymerase chain reaction; rRNA, ribosomal ribonucleic acid; NR, not reported; RT-PCR, reverse transcription polymerase chain reaction.
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on offspring at different life span. Lower vitamin D levels were related with increased 
pro-inflammatory genes expression, reduction in VDR at 3-month-aged offspring, lower 
Bacteroides/Prevotella ratio at day 21 and higher level of lipopolysaccharides (LPS) concentration 
in adults. In addition, lower bacteria count was reported in the mice received low vitamin 
D in comparison to high vitamin D diet. Dysbiosis and increasing of injury in gut following 
VDR or 1, 25(OH)2D3 deficiency has been also reported by Ooi et al. [23]. They found that 
vitamin D could regulate the intestinal microbiota while Bacteroidetes and Proteobacteria were 
more abundant in fecal sample of cytochrome P (Cyp) knockout (KO) and VDR KO mice in 
comparison to wild-type mice. In contrast, Firmicutes were less abundant in Cyp KO and VDR 
KO mice. The results of Ooi et al. [23] is similar to Assa et al. [24] about the abundance of 
Bacteroidetes as Assa et al. [25] reported the relatively high quantity of Bacteroidetes, Firmicutes, 
Actinobacteria and Gammaproteobacteria observed in vitamin D deficient mice in one study and in 
another one higher relative abundance of Bacteroidetes.

VITAMIN D AND MICROBIOTA: HUMAN STUDIES

Cantarel et al. [3] conducted a clinical trial on women with or without relapsing-remitting 
multiple sclerosis (MS) who were vitamin D insufficient. They reported that after 3 months 
of vitamin D supplementation (5,000 IU/day), the relative abundance of Faecalibacterium and 
Enterobacteriaceae increased, while in overall the relative abundance of Ruminococcus decreased. 
Moreover, after supplementation with vitamin D, untreated MS participants had an increased 
abundance of Akkermansia, Faecalibacterium, and Coprococcus genera, in comparison with healthy 
controls and glatiramer acetate-treated MS subjects. Those treated with glatiramer acetate 
compared to other groups had increases in Janthinobacterium and decreases in Eubacterium 
and Ruminococcus after vitamin D supplementation [3]. In a 3-month uncontrolled trial, 
1,000 neurological patients received individualized doses of vitamin D to guarantee a blood 
level of 60–80 ng/mL plus B100 (B complex of 100 mg of all B vitamins except 100 mcg of 
cyanocobalamin, 100 mcg of biotin, and 400 mcg of folic acid). The authors concluded 
that these patients did not experience the IBS symptoms during 3 years after stopping the 
supplementation. Supplementing vitamin D plus all 8 B vitamins led to a change in the 
intestinal microbiome to normal status in 3 months. This result showed the role of normal 
intestinal microbiome in reducing pain, sleep disorders, and IBS symptoms through 
increasing vitamin D and B vitamins level [17].

In another study, Ciubotaru et al. [31] conducted a double-blind placebo-controlled 
randomized trial in men with pre-diabetes and vitamin D deficiency for more than one year. 
Supplementation with 50,000 IU/week ergocalciferol reduced the relative abundance of 
several genera of the Lachnospiraceae (e.g., Ruminococcus, Roseburia, Blautia, and Dorea) in high 
vitamin D quartiles. Another clinical trial also investigated the association between vitamin 
D supplementation and gut microbiome composition on 333 infants 3 to 6-month-aged. 
After vitamin D supplementation in pregnant women in 2 different doses of 4,000 IU vitamin 
D + prenatal vitamins or 400 IU vitamin D + prenatal vitamins, fecal samples from infants 
were collected and analyzed. In infants with higher cord blood vitamin D levels, the relative 
abundance of Lachnospiraceae/U. Clostridales and Lachnobacterium was higher, while the relative 
abundance of Lactococcus was lower [30].

According to the study recently published by Garg et al. [28] Enterobacteriaceae were 
significantly increased in patients with ulcerative colitis following 40,000 IU D3/week 
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supplementation for 8 weeks. In another controlled trial on patients with Crohn's disease, 
20,000 IU D3 were given for one month. Greater abundance of Alistipes, Barnesiella, 
unclassified Porphyromonadaceae, Roseburia, Anaerotruncus, Subdoligranulum and an unclassified 
Ruminococaceae was reported after vitamin D supplementation [27]. In a double-blind, 
randomized, placebo-controlled clinical trial on adults with cystic fibrosis, Lactococcus 
was increased, while Veillonella and Erysipelotrichaceae were decreased after 12-week 
supplementation with 50,000 IU D3/week [29]. In another study 62 fecal sample from healthy 
infants were collected that thirty-five of them were supplemented with 400 IU of vitamin 
D per day. Comparative metagenomic analysis was done to investigate the distribution and 
diversity of infant gut microbiota. The researchers found that vitamin D plays an important 
role in modifying the infant gut microbiota, especially increase the probiotics types [37].

Observational studies have also been conducted in this field. In a cross-sectional study 
designed on 150 healthy individuals, authors demonstrated that higher vitamin D intake 
was associated with higher abundance of Provotella and lower abundance of Haemophilus and 
Veillonella. Moreover, the abundance of Coprococcus and Bifidobacterium was inversely related to 
the vitamin D intake [33]. Another study was conducted to find the correlation between some 
dietary nutrients and microbiota composition in 60 women, during the second trimester of 
pregnancy. Results showed that higher vitamin D intake is associated with increased ratio 
of Actinobacteria/Proteobacteria, Actinobacteria/Bacteroidetes, Proteobacteria/Firmicutes, and other 
Bacteroides in pregnant women [34]. Another cohort study by Talsness et al. [32] aimed to 
evaluate the effect of vitamin D supplementation of infant and maternal subject on microbiota 
composition. A significant negative linear trend between maternal vitamin D supplementation 
and plasma 25(OH) D concentration and Bifidobacterium spp. was seen. In some breast-fed 
infants, vitamin D supplementation leads to lower abundance of Clostridium difficile. In a cross-
sectional study of 567 old men, higher levels of 1,25(OH)2 D were more related to butyrate 
producing bacteria that are associated with better gut microbial health [35]. In a birth cohort 
study, prenatal and cord blood vitamin D levels were associated with early life (up to 1 month) 
gut microbiota [36]. Recently, a review highlighted the therapeutic potential of vitamin D/VDR 
in the gut microbiota modulation and anti-inflammatory effects in IBD [38].

CRITICAL APPRAISAL OF EVIDENCE

Reviewing the studies showed that the normal microbiota makes up of 4 main phyla 
(Bacteroidetes, Firmicutes, Proteobaceria, and Actinobacteria) [17] in which many factors including diet 
could change their balance [39]. Gut microbiota plays an important role in health and disease 
and now is considered as a separate human organ that affect the other organs [40]. The 2 main 
bacteria phyla in human feces are Bacteroidetes and Firmicutes. Other dominant phyla with less 
relative abundance are Proteobaceria, and Actinobacteria [17,41]. To make a better view about the 
results, we considered microbiota in the phylum to genus level. In this section of review, we 
discuss the probable effect of vitamin D on gut microbiome in the phylum to genus level.

In phyla level, one study has shown that supplementation with vitamin D may change the 
microbiota composition with reducing in phylum Firmicutes [31]. Two other interventional 
studies have reported inconsistence results in which Firmicutes genus increased in one study 
while, the population of Firmicutes decreased in the other study [3,30]. Although some studies 
showed increased Firmicutes genus, it has been reported that this genus is known as butyrate 
producers and anti-inflammatory [42]. In an observational study, Luthold et al. [33], have 
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shown a reduction in Firmicutes phyla while Mandal et al. [34], have reported an increase in 
Proteobaceria/Firmicutes ratio. However, in both studies, the population of phylum Bacteroidetes 
increased. There is a hypothesis in which changing in microbiota composition to higher level 
of Bacteroidetes and lower level of Firmicutes would benefit the host while increasing in Firmicutes 
may leads to gut barrier dysfunction [43,44].

The other 2 dominant phyla are Proteobaceria, and Actinobacteria, which seems to present pro-
inflammatory and anti-pathogenic properties. One study has reported increase in Proteobaceria 
after vitamin D supplementation [3] and the other showed increase in Actinobacteria/
Proteobaceria, Actinobacteria/Bacteroidetes, and Proteobaceri/Firmicutes ratio with higher dietary 
intake of vitamin D [34] while Luthold et al. [33] showed inverse relationship between some 
Proteobaceria and Actinobacteria genus and serum levels of vitamin D. This controversy may be 
explained by differences in study design. Luthold et al. [33], conducted his study in a cross-
sectional design which is not strong for identifying causal relationships.

In genus level, all genera that their changes have been reported in the studies were as 
follows: Lactococcus, Blautia, Rosburia, Ruminococcus, Dorea, Faecalibacterum, Coprococcus, Veillonella, 
Subdoligranulum, Erysipelotrichaceae, Eubacterium, Anaerotruncus, C. difficile (phylum Firmicutes), 
Provotella, Alistipes, Barnesiella, Porphyromonadaceae (phylum Bacteroidetes), Haemophilus, 
Janthinobacterium, Enterobacteriaceae (phylum Proteobaceria), Bifidobacterium (phylum Actinobacteria), 
and Akkermansia (phylum Verrucomicrobia). Among these genera Blautia, Rosburia, Dorea, and 
Coprococcus are all from family Lachnospiaceae. One study showed significant reduction in 
abundance of Blautia, Rosburia, Ruminococcus, and Dorea after vitamin D supplementation [31] 
which all are associated with increasing gut permeability and inflammation [45]. In another 
study by Cantarel et al. [3] supplementation with vitamin D3 in MS women lead to increase in 
abundance of Akkermansia, Faecalibacterum, and Coprococcus (family Lachnospiaceae) which Coprococcus 
and Faecalibacterum have known as butyrate producers and may be anti-inflammatory [42]. 
Akkermansia, another increased genus is a mucin-degrading bacteria [46]. Sordillo et al. [30] 
concluded that higher vitamin D level is correlated with higher abundance of Lachnospiaceae/U. 
Clostridales. Multivariate analysis showed increasing Lachnobacterium and decreasing Lactococcus 
abundance. According to this research, low vitamin D level is associated with dysbiosis and 
inflammation progression. Contrary to the results of this study about Lactococcus, 2 studies 
reported an increase in Lactococcus, which related to positive gut health, after supplementation 
with vitamin D [29,33]. On the other hand, based on Luthold et al. [33], the abundance of 
Bifidobacterium inversely related to the vitamin D intake. In line with this finding, the abundance 
of Bifidobacterium spp. was inversely related to maternal plasma 25(OH) D concentration in 
observational study by Talsness et al. [32]. Bifidobacterium and lactic acid bacteria like Lactococcus 
are both known for their potential probiotic effects. Although the results of this review are partly 
associated with the prebiotic properties of vitamin D, are not confirmed by the contradictory 
nature of the studies and there is a need for further studies focusing on probiotic bacteria.

Luthold et al. [33] showed higher abundance of Provotella and lower abundance of Coprococcus, 
Haemophilus and Veillonella in the highest vitamin D intake tertile which is consistent with 
Kanhere et al.'s study [47] on the Veillonella which was known as cause of many infections 
[47]. Results about Coprococcus are inconsistent with Cantarel study which could be due to its 
cross-sectional design or the other factors for example the probable effect of MS on intestinal 
microbiota. Moreover, results of this research showed the lowest tertile of vitamin D intake 
correlated with increasing in LPS level that likely due to increase in gram negative bacteria 
(Haemophilus & Proteobacteria) which have LPS in their outer membrane. As mentioned above, 
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in the Mandal et al.'s research [34], vitamin D intake was associated with increasing the 
Actinobacteria/Proteobacteria, Actinobacteria/Bacteroidetes, Proteobacteria/Firmicutes ratio, and other 
Bacteroides in pregnant women. On the other hand, higher vitamin D intake may decreases 
microbiome diversity. It has been known that reduction in microbiota variety is related to 
some diseases including IBD [48], obesity [20], autism [49], and allergy [50]. Besides higher 
intake of vitamin D changes the microbiome toward increasing Actinobacteria and Proteobacteria 
abundance at phyla levels. These 2 phyla presented anti-pathogenic properties [34]. To be 
noted that meat and other animal products are important sources of vitamin D and several 
publications have reported the effect of meat on microbiota [51]. These relationships may 
be explained with antimicrobial characteristics of vitamin D that encompass certain groups 
of bacteria. Therefore, higher intake of vitamin D might cause an increase in probable 
pathogens [34]. The observed contradiction in findings may be the result of inaccurate 
vitamin D assessment method (food frequency questionnaire) used in this research.

Suggested mechanisms for the role of vitamin D in gut health is shown in Figure 1. Generally, 
vitamin D effects are as follows: gene expression modulation of anti-microbial peptides like 
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Figure 1. Suggested mechanisms for the association of vitamin D and microbiota. 
RXR, retinoid X receptor; VDR, vitamin D receptor; VDRE, vitamin D response element; ZO, zonula occludens; TLR, Toll-like receptor; NOD, nucleotide 
oligomerization domain; NF-κB, nuclear factor kappa B; LPS, lipopolysaccharides.
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cathelicidin and β-defensin [52], gene expression modulation of tight junction proteins 
like zonulin occluden-1, zonulin occluden-2, claudin 2, and 12 [53], regulation of innate 
immune system via gene expression modulation of toll-like receptor 2 and nucleotide-
binding oligomerization domain 2 and adaptive immune system via modulation of B- and 
T-lymphocyte function [52,54].

CONCLUSION

This study reviewed the data of literatures that investigated the association between vitamin 
D and gut microbiota. In observational studies, the association of vitamin D deficiency with 
dysbiosis has been reported. Furthermore, interventional studies were emerging that vitamin 
D change the microbiota composition in which leads to increase in beneficial bacteria, such 
as Ruminococcaceae, Akkermansia, Faecalibacterium, Lactococcus, and Coprococcus while decreases in 
some genera from Firmicutes.

There is scarcity of research on the association between vitamin D and microbiota 
composition. It seems appropriate dose of vitamin D can alter the gut microbiota with 
increase in Bacteroidetes and decrease in Firmicutes. At genera level, vitamin D may connect to 
some genera of Lachnospiaceae family (e.g., Blautia, Rosburia, Dorea, and Coprococcus). Therefore, 
maintaining the appropriate amount of vitamin D in the body seems to have beneficial effects 
on the composition of the gut microbiota.
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